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Abstract—Unmanned Aerial Vehicles (UAVs) are emerging as
a powerful tool for various industrial and smart city applications.
The UAVs coupled with various sensors can perform many
cognitive tasks such as object detection, surveillance, traffic
management, and urban planning. These tasks often rely on
computationally expensive deep learning approaches. Execution
of the compute intensive algorithms are usually not feasible
with the embedded processors on a power-constrained UAV.
Therefore, the Edge-Al has emerged as a popular alternative
in such scenarios by offloading the heavy-lifting tasks to the
Edge devices. This work proposes a deep learning approach
for detection of objects in aerial scenes captured by UAVs.
In our setup, the power-constrained drone is used only for
data collection, while the computationally intensive tasks are
offloaded to a GPU edge server. Our work first categorize the
current methods for aerial object detection using deep learning
techniques and discusses how the task is different from general
object detection scenarios. We delineate the specific challenges
involved and experimentally demonstrate the key design decisions
which significantly affect the accuracy and robustness of model.
We further propose an optimized architecture which utilizes these
optimal design choices along with the recent ResNeSt backbone in
order to achieve superior performance in aerial object detection.
Lastly, we propose several research directions to inspire further
advancement in aerial object detection.

Index Terms—Aerial computing, UAVs, object detection, arti-
ficial intelligence

I. INTRODUCTION

Intelligent Unmanned Aerial Vehicles (UAVs) have a major
projected role in intelligent transportation, surveillance, envi-
ronmental monitoring, and security. It facilitates integration of
information collected from various sensors and communication
technologies (ICT) such as Internet of Things (IoT) and
blockchain networks to provide holistic integrated services
impacting living and security [1]. The UAVs with computer
vision capabilities have a critical role in realizing these tar-
gets. Object detection is an integral component in numerous
computer vision applications. The UAVs equipped with high
resolution cameras can be employed in an extensive range of
applications including surveillance, disaster response strategies
and construction of transportation systems.

In the last decade, a lot of performance improvement has
been obtained in generic object detection [2]. More specif-
ically, the deep learning algorithms for object detection [3]
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have significantly outperformed the traditional approaches.
The feature learning framework in deep learning addressed
several problems in the previous approaches such as generation
of large number of redundant proposals by the time-consuming
selective search method and manual feature design process.
However, the aerial images [4] differ from regular images
[5], Some of the challenges in aerial view include low spatial
resolution of objects, multitude of object sizes (small, medium,
large), and complex backgrounds. This makes aerial object
detection much more difficult than the general object detection.

In this paper we focus on a specific architecture, Reti-
naNet [3] which is a single stage end-to-end object detector. It
is specially suitable for object detection in aerial view due to
its focal loss, which helps it in focusing on tougher samples,
and feature pyramid network, which helps it to adjust to wide
variety of object sizes that can occur in images captured by
drones. We specifically focus on the critical parameters of
the model that influence the detection of smaller objects. We
provide a detailed experimental analysis of these parameters in
the VisDrone 2019 dataset. We perform experiments with the
robust ResNeST50 backbone and compare the results with the
traditional VGG16 and ResNet50 backbones. We also show
that the default anchors used in RetinaNet are inadequate
when it comes to aerial images, and needs to be carefully
optimized to get good performance. Based on the experiments,
quantitative and qualitative results, we list some possible future
research directions for the readers.

II. GENERAL OVERVIEW OF AERIAL OBJECT DETECTION

The existing deep learning based object detection frame-
works can be divided into two main categories: region-based
and region-free. The region based frameworks involve two
stages. In the first stage region proposals are generated from
an image with no associated category information. These
filter out majority of the negative locations, and generates
the regions where the objects are most likely to be present.
In the second stage, additional features are extracted from
these regions, and then classifiers are used to determine
the category labels of the proposals. Most common region-
based detectors include R-CNN, Faster-RCNN and R-FCN.
Region free detectors, also known as single-stage detectors
such as YOLO, YOLOvV2, YOLO3, SSD and RetinaNet [3]
completely eliminate region proposal generation and are hence
called region-free. It directly predicts the class probabilities
and bounding box offsets from full images with a single
feed forward CNN network. Mandal et al. [6], [7] designed
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Fig. 1: Challenges in aerial object detection. Notice the variation of scenes, variation in the number of objects and their
sizes. Images from Visdrone dataset [4].

one-stage detectors to efficiently learn the small-size object
features from aerial views. They also present a new labeled
aerial dataset for experimental analysis. Qin et al. [8] present
the specially optimized one-stage network by combining the
feature and semantic information of the objects. The network
is constructed with the feature enhancement, multiscale de-
tection, and feature fusion modules. The multiscale features
have been frequently used with several improvisations in many
recent works.

A. Datasets

In general, the aerial object datasets could be either captured
by satellites like DOTA [9], or captured by drones like Vis-
Drone [4]. For our experiments, we use Visdrone 2019 object
detection dataset [4] which consists of 8599 snapshot images
taken from drone-mounted cameras. The dataset has ten varied
classes (pedestrian, people, bicycle, car, van, truck, tricycle,
awning-tricycle, bus, motor) captured from different regions
of China in different environment and lighting conditions.
As is evident from the classes, the images have objects of
different shapes and sizes with over 2.6 million hand annotated
bounding boxes which makes it suitable for our experiments.

III. MAJOR CHALLENGES IN AERIAL OBJECT DETECTION

Aerial object detection has some interesting characteristics
which makes it much more difficult task than the regular view
object detection. We highlight some of the major challenges
to aerial object detection.

A. Low spatial resolution

A typical aerial image is captured from a drone flying at
a high altitude from the ground which is a bird’s eye view

of the objects on the ground. Hence most of the objects like
pedestrians, cars, bicycles etc, are very small in spatial size
and are generally crowded. This small size becomes a major
challenge for object detection algorithms. Further the crowded
objects in the image makes it difficult to classify each of them
separately with distinctive boundaries.

B. Multitude of object sizes

Due to the large field-view of drones, they typically capture
a large number of objects which differ in their spatial dimen-
sions. For instance, the Visdrone dataset has class labels for
objects as big as trucks and buses to objects like bicycles and
awning-tricycles which are comparatively very small. These
large objects are generally easier to detect because the deeper
layers of neural networks are able to form informative features
for them due to their greater receptive field. This is in contrast
to smaller objects where the resolution keeps on decreasing
as we go deeper in the network. Although the deeper layers
are semantically strong i.e. they encode more meaningful
relationships, they become spatially very weak i.e. they loose
out on a lot of fine-grained information which makes detecting
such objects very difficult. Hence, handling different varieties
together is a challenge to deep learning based models.

C. Discriminatory Loss function

The most common performance metric for object detection
is Intersection over Union (IoU). Intersection over union
means how much overlap is there between ground truth and
predicted bounding boxes as a ratio of the total area covered by
these boxes. It determines how accurate the predicted bound-
ing box is with respect to the ground truth box. However, Lu
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Fig. 2: Architecture Diagram. The input image taken from a drone is passed through ResNest and further downstream feature
extraction layers followed by regression and classification subnets. We get the final object detection bounding boxes and labels
as the output of regression and classification subnets. The blue bounding boxes in the output image show the predicted objects.

Captions are omitted for clarity.

et al. [10] shows how IoU has an inherent bias to favour larger
objects. For the same decrease in the intersection between
predicted and target boxes for both small and large objects, the
drop in IoU is larger for smaller objects compared to larger
objects. This discrimination forces the model to focus less on
small objects thereby reducing its performance.

D. Occlusion and variation in surrounding illumination

Occlusion is a general problem in object detection but it’s
effect is more prominent when dealing with aerial images.
Occlusion along with the shadowing of objects by large
buildings and trees makes detection even more difficult. Due to
the small size of the objects, even partial occlusion can make
detection of such objects almost impossible. Another difficulty
is variation in surrounding illumination. For example some of
the cars might lie in illuminated area, while some might lie
in dark region. For instance, the cars in dark region with dark
shade bonnets are hardest to detect for any object detector,
and hence a lot of potential work needs to be done to tackle
this problem of low and varying illumination.

IV. EXPERIMENTS AND ANALYSIS

To understand and solve the multi-facet problems of object
detection in aerial view as described in the previous Section,
we conduct numerous experiments to analyze the effect of

the backbone and anchor configuration in RetinaNet. We vary
the number of scales and aspect ratios and perform anchor
optimization using the optimization algorithm of Zlocha et.al.
[11] We use the VGG16 and ResNet50 backbones which
have been pre-trained on ImageNet. We also use ResNeSt50
backbone [12] which is pre-trained on the COCO-2017 dataset.
Based on the conducted experiments, we propose a novel
detector, DeepDroneSt which is optimized for aerial object
detection. DeepDroneSt utilizes a superior ResNeSt50 features
for improved performance. The extracted features are passed
to the feature pyramid network to ensure spatially and se-
mantically strong features. The regression and classification
sub-networks take as inputs the features from each level of
the pyramid and predict the offsets and confidence scores for
the bounding boxes respectively. The final bounding boxes are
then obtained from these predictions using top-k filtering and
a technique called hard non-max suppression, which tries to
eliminate the duplicate bounding boxes that might be predicted
by the model.

A. Implementation Details

All architectures in Table I are trained end-to-end using a
single Tesla V100 GPU. The images are resized so that their
minimum side is equal to 800 pixels and maximum side is less
than 1333 pixels. We use stochastic gradient descent with a



(a) The performance of default anchors
on an image from VisDrone dataset. The
green ones have the anchors available with
the default anchors while the red ones
don’t have any anchor matching

(b) The performance of optimized anchors
with 3 ratios and 5 different scales. Notice
the stark decrease in number of red boxes
as compared to Figure 3a

(c) The performance of optimized anchors
with 5 ratios and 3 different scales. No-
tice the further decrease in number of red
boxes as compared to Figure 3a and Figure
3b

Fig. 3: Effect of anchor optimization. The figures shows better object recognition from left to right with the help of more

diverse and optimized anchors

#iratios #scales ‘ ‘ backbone AP[%] APS0[%] AP75[%] ‘ AR1[%] AR10[%] AR100[%] ARS00[%]

VGG16 15.09 23.62 16.99 1.17 10.37 19.54 19.55

3 3 ResNet50 13.30 20.82 14.97 1.28 9.99 17.87 17.88
ResNeSt50  17.56 27.84 19.45 1.69 11.63 22.23 22.23

VGG16 14.68 26.13 15.06 0.82 8.33 20.30 20.34

5 3 ResNet50 12.69 23.51 12.65 0.81 7.84 18.33 18.37
ResNeSt50  16.89 29.56 17.59 0.94 9.44 22.16 22.16

VGG16 16.40 28.15 17.33 0.88 9.23 22.36 22.4

5 5 ResNet50 14.13 25.50 14.28 0.84 8.72 20.06 20.09
ResNeSt50  19.41 35.93 19.21 0.94 9.59 27.54 27.54

TABLE I: AP values from different anchor configurations and backbones

mini-batch consisting of a single training sample. Smooth LI
loss is used for the regression submodel and focal loss with
a = 0.25 and y = 2 for the classification submodel. Initial
learning rate is 107 and adam optimizer is employed. We
experiment with 3 sets of anchor ratio and scale combinations.
The first anchor set consists of 3 ratios and 3 scales with
their default values used by retinanet [3]. The second and
third anchor sets consist of 5 ratios and 3 scales and 5
ratios and 5 scales respectively which are optimized using
an algorithm proposed by [11]. Each of these sets are trained
separately with VGG16, ResNet50 and ResNeSt50 backbones.
The models using the first combination of 3 ratios and 3
scales are trained for 50 epochs whereas the models using the
other combinations are trained for 60 epochs to compensate
for the increase in number of anchor parameters. Additionally
we train another RetinaNet model with VGG16 as backbone
with 5 ratios and 3 scales on the VisDrone dataset with the
“large object” categories removed. Specifically we remove the
car, van, truck and bus annotations from the training set and
analyze the reasons behind the performance difference with
and without these larger object classes. All experiments use a
confidence threshold of 0.5 and NMS threshold of 0.5.

B. Effect of Anchors

A lot of popular object detection algorithms like Fast RCNN
[13] depend on region proposals approach of generating the

probable image locations for object detection. Though they
have been very successful, generating these image locations
is computationally expensive. To tackle this problem, another
popular approach based on anchors, is being used by object
detection models like Faster RCNN and RetinaNet [3]. The
anchors are crude bounding boxes, whose adjustments are
trained by the network to fit the objects of focus in the image.
Anchors can be of different sizes and aspect ratios depending
upon the properties of objects in the image. Although in most
cases, the default sizes of the anchor boxes work well in
localizing the objects, we found out that these are highly
inefficient when it comes to localizing smaller objects as those
captured from drones.

The large number of red boxes in Figure 3a clearly indicates
that the default anchors sizes perform poorly on aerial images
especially on smaller objects like pedestrians. The presence of
these red boxes on small objects means that these objects will
not be able to contribute to the training as most of them do
not have an IoU overlap above the threshold (usually 50%).
Hence we optimize these anchors to adjust to the sizes of
aerial objects. Also the number of ratios and scales need to be
decided by the network designer. Ideally, we can have a lot
of anchors with various ratios and scales. But the problem is
that as we increase the number of anchors, the training time
increases drastically. Also just increasing the number of ratios
and scales of anchors do not guarantee better performance.
As we can see from Table I, despite the change from the non-



optimized 3 ratios and 3 scales anchors to the optimized 5
ratios and 3 scales anchors both the AP and AR 1-100 scores
have decreased for all the backbones. However increasing both
the ratios and scales to 5 and 5 and optimizing them increased
both the precision and recall to a large extent. The results
indicate that detection of smaller objects is more sensitive to
an increase in scales than to an increase in ratios of anchor
boxes. We hypothesize that this is because more number of
anchor boxes will be assigned to ground truth boxes during
training because of an increase in IoU due to the larger variety
of scales. The chance of an increase in IoU with increase in
scale is more than that due to an alternate ratio as the larger
scale covers more area bringing more number of ground truth
objects under it.

C. Effect of Backbone

One vital component of the RetinaNet model or any other
general object detector is their backbone architecture which
is used for extracting features from the high dimensional
input images. The earlier layers extract simple features like
edges while the deeper layers combine the features of previous
layers to extract more concrete and distinct features from
the image. Generally, due to the convolutional and max pool
layers, the resolution of the image keeps on decreasing as
we go deeper in the architecture. Consequently, the earlier
layers are spatially stronger but semantically weaker while the
deeper layers are spatially weaker (due to low resolution) but
semantically stronger. Most of the architectures tend to use
features from the deeper layers to perform computer vision
tasks like object detection.

We experimented with most common backbones like
VGG16 and ResNet50 which have different design and num-
ber of layers. We observe that in all the three sets of anchors,
VGG16 outperforms ResNet50 in both precision and recall
(Table I). We conclude VGGI16 is able to extract semantically
and spatially stronger features for smaller objects which are
predominant in aerial images compared to ResNet50. Due
to more number of layers in ResNet50, the deeper layers
become spatially too weak for very small images, due to wider
and less precise receptive field. Though ResNet50 uses skip
connections which could theoretically skip many layers and
learn a less deeper feature extractor, in our experiments we
observed that the model typically does not learn to skip layers.

We also tried a recently proposed ResNest50 backbone. We
observed a consistently better performance with ResNest50 as
compared to other backbone layers. The superior performance
of ResNest50 can be attributed to its split-attention block
which learns the weights for different features and is thus
able to learn stronger representations for the different object
classes. While residual connections make the model easier
to learn the identity function to prevent the problem of
vanishing/exploding gradients, aggregate transformations help
the model to learn better feature representations.

D. Object Size Modalities

The wide variety of object sizes is one of the distinctive
characteristics of aerial image datasets. The object sizes can

vary from as large as truck, aeroplanes, to as small as
pedestrians and motor-cycles. The aiskyeye dataset also has
varied object categories which makes object detection on it
very challenging. To study this effect, we evaluate the model’s
performance on various kinds of object categories. Figure 4b
shows the class wise performance of RetinaNet on Aiskyeye
dataset. We observe that the model performs very poorly on
small objects like pedestrain, people and bicycle when com-
pared to larger objects like car, van, truck and bus. To further
investigate the above results, we masked the classes of larger
objects namely the car, van, truck and bus and retrained the
model on remaining classes. Except for the awning tricycle,
all other classes witnessed a considerable increase in accuracy
with the largest increase present in Pedestrian and Tricycle
classes. The pedestrian class witnessed an increase in AP from
5.97% to 7.09% and the tricycle class from 2.03% to 4.21%.
The experiment demonstrates the dominance of the larger
object categories on the loss function revealing that further
improvements to the loss function can be made to improve
detection on these smaller objects.

V. PROMISING FUTURE RESEARCH DIRECTIONS
A. Specialised Loss Function

Loss functions are used to tell the model how good or bad its
performance is on a particular task. It is one of the most critical
parameters in learning process of machine learning models and
its efficient design can lead to substantial increase in model
performances. As shown in Experiments section C, larger
objects are easier to detect as compared to smaller objects.
Also, we showed that larger objects tend to dominate the
existing loss functions over the small images, which hampers
the learning for smaller images. Hence, a lot of work needs
to be done in the design of efficient loss functions which can
penalise the mis-detection of smaller images more heavily as
compared to larger images. One such simple loss function
could be made by simply scaling the loss function by a term
which is inversely proportional to the area of ground truth
bounding box. Thus the model will have larger loss for smaller
objects as compared to larger objects. More complex loss func-
tions can include contributions corresponding to increasing
degree of complexity with features like occlusion percentage,
truncation ratio, crowding and many others depending upon
the attributes available for the respective datasets.

B. Experiments with Different Layer Depths

Due to small sizes of objects captured by drones, deeper
layers sometimes becomes spatially too weak. Hence, using
shallower layers might boost the performance significantly.
Hence quantitative comparison of results on performing de-
tection using different activation layers of backbone and FPN
should be performed. Moreover, the results from top perform-
ing layers can be ensembled, to provide the final results.

C. Anchor-free Approaches

While anchors play a major role in object detectors like
RetinaNet, it requires careful tuning for its effective use. In
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Fig. 4: AP/AR Test-Set Scores. Fig. 4 (a) shows the performance on VisDrone2020 by various models. ResNeSt50 with 5
ratios and 5 scales anchor achieves the best accuracy. Fig. 4 (b) indicates the class-wise performance of the different algorithms.
Notice the stark difference in performance between cars, vans and people, bicycle.

cases of varying object sizes, anchors become a bottleneck
to both qualitative and computational performance. Hence
anchorless object detectors [14], [15] might provide better
flexibility and performance for aerial object detection.

D. Combined Segmentation and Detection

Background noise is one of the major challenges to object
detection. Hence, first performing an instance segmentation
on the image could be a useful step to reduce the noise in
the image, after which the object detection could be done.
Recently, the Mask-RCNN and RetinaNet were combined to
build RetinaMask in the literature. Similar architectures could
be developed with special focus for aerial object detection
and segmentation. The results of our experiments can help
in deciding the various design factors of these combined
architectures.

E. Self-Supervised and Unsupervised Learning

A major drawback of supervised learning methods is the
need for enormous amount of dataset for training the models.
Self-supervised learning uses pretext tasks, which are designed
for learning visual features that can be further used to solve the
actual downstream task. Some of the commonly used pretext
tasks include minimizing reconstruction error in autoencoders,
image inpainting, greyscale colorisation among many others.
Similar research in aerial object detection can significantly
improve the state of the art by decreasing the dependence on
very large training datasets.

VI. CONCLUSION

Aerial object detection is a very important field of research
with huge potentials for practical applications in developing
smart cities, and surveillance systems powered by the recent
advances in [oT. In this paper we first discuss the existing deep
learning based approaches towards detecting objects in aerial
images. We then present a detailed analysis of the challenges

and difficulties in detecting objects that are distinctive to
aerial image datasets. Several experiments are carried out to
understand the impact of many critical parameters that affect
detection accuracy such as the anchor box configuration and
backbone architecture used for feature extraction in RetinaNet.
We also propose DeepDronest, an object detection model that
outperforms current RetinaNet variants with the help of split-
attention network of ResNest. We then present possible future
areas of research where further improvements can be made
such as designing a more efficient loss function or combining
segmentation with detection.
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